Stabilization of sulfenyl(poly)selenide ions in N,N-dimethylacetamide

Abdelkader Ahrika, Julie Robert, Meriem Anouti and Jacky Paris*

Laboratoire de Physicochimie des Interfaces et des Milieux Réactionnels, UFR Sciences et Techniques, Parc de Grandmont, 37200, Tours, France. E-mail: paris@univ-tours.fr

Received (in Montpellier, France) 16th January 2002, Accepted 27th May 2002 First published as an Advance Article on the web 5th September 2002

Whereas redox processes resulted from the reactions $PhSe^{-}/S_8$ or $PhSe_2Ph/S_3^{\bullet-}$, mixed anions $RSSe_y^{-}$ (R = Ph, PhCH₂; y = 1-3) were obtained by the slow addition of solid selenium to thiolate ions in N,N-dimethylacetamide. The RS⁻ + n Se reactions, which were investigated by spectroelectrochemistry, led initially (n = 1) only to the formation of RSSe⁻ ions. These species oxidized into RS₂R faster than RS⁻ on a gold electrode, with the simultaneous electrodeposition of very reactive microcrystals of selenium. On a preparative scale, the substitution of RSSe⁻ ions (R = CH₃, Ph) on alkyl halides yielded RSSeR' compounds (R' = PhCH₂, CH₃, respectively) which greatly disproportionated. Further additions of Se (n = 2, 3) to RS⁻ ions led to RSSe₂⁻ and RSSe₃⁻ in equilibrium with RS₂R and mixtures of Se_x²⁻ polyselenide ions (x = 4,6; 6,8). Visible spectra of RSSe₂⁻ and RSSe₃⁻ ions were calculated from the study of the backward reactions RS₂R + Se_x²⁻ (x = 4, 6).

We previously reported that solid selenium slowly reacts with RSe⁻ selenolate ions in N,N-dimethylacetamide (DMA), a dipolar aprotic medium, yielding successively RSe_y^- ions [eqn. (1); R = Ph, $PhCH_2$; y = 2–4]. 1 RSe_3^- and RSe_4^- ions disproportionate [eqn. (2)] into diselanes and Se_x^{2-} polyselenide ions which had been characterized (x = 4, 6, 8): 2

$$RSe^{-} + (y - 1) Se(s) \rightarrow RSe_{y}^{-}$$
 (1)

$$2 RSe_{v}^{-} \rightleftharpoons RSe_{2}R + Se_{x}^{2-}$$
 (2)

Reactions (1) are similar to those observed between sulfur and thiolates leading to RS_y^- ions (R = alkyl, y = 2-5). However, very little is known about 'mixed anions' such as $RSSe_y^-$ or $RSeS_y^-$ ($y \ge 1$): a variety of selenenyl thiolates ($RSeS^-Li^+$) resulting from the addition of one sulfur unit to lithium alkyl selenolates (RSe^-Li^+) in THF were characterized *in situ* by ⁷⁷Se NMR at 193 K; 4 however 'RSeS $^-$ readily underwent internal redox-reactions below room temperature' [eqn. (3)], and $RS^- + Se$ (or Te) processes were described as ineffective in THF. 4

$$2 RSeS^- \rightarrow RSe_2R + S_2^{2-}$$
 (3)

Using UV-visible absorption spectrophotometry, we recently showed that the stoichiometric addition of sulfur to selenolate ions 2-NO₂C₆H₄Se⁻ (ArSe⁻, $\lambda_{max} = 520$ nm; [S]_{ad}/[ArSe⁻]₀ = 1) yielded $\simeq 85\%$ of ArSeS⁻ ions ($\lambda_{max} = 728$ nm);⁵ these species being partly oxidized in the presence of excess sulfur [eqn. (5)]:⁵

$$2 \text{ ArSe}^- + S_2 \rightleftharpoons 2 \text{ ArSeS}^- \tag{4}$$

$$2 \text{ ArSeS}^- + 3 \text{ S}_2 \rightleftharpoons \text{Ar}_2 \text{Se}_2 + \text{S}_8^{2-}$$
 (5)

While the formation of $ArSe_2^-$ as in eqn. (4) $(ArSe^- + Se)$ was complete, the conversion of ArS^- into $ArSSe^-$ only reached $20\%.^5$

It has now been established that RS_2^- ions oxidize into RS_2R faster than RS^- ions on a gold electrode, according to eqns. (6) and (7):^{3,6}

$$2 RS^- + S_2 \rightleftharpoons 2 RS_2^- \tag{6}$$

$$2 RS_2^- - 2 e^- \rightarrow RS_2R + S_2$$
 (7)

Surprisingly, analogous anodic behaviours have been reported and ArSSe species, suggesting fast heterogeneous reactions between RSe or ArS ions and electrogenerated solid selenium. This hypothesis is reconsidered in the present paper which is mainly devoted to the expected stabilization of RSSe_v⁻ ($y \ge 1$; R = Ph, PhCH₂) and PhSeS⁻ ions. The reactions RS^-/Se and $PhSe^-/S$, RS_2R/Se_x^{2-} (x = 4, 6, 8) and PhSe₂Ph/S₃•- were therefore followed by UV-visible spectrophotometry coupled with voltammetry (CV and rotating gold disc electrode). Natural selenium-containing compounds have been the subject of extensive studies because of their possible cancer chemopreventive properties.^{7,8} 'Selenenyl sulfides' RSSeR' identified in Allium volatiles from speciation experiments,9 are most frequently prepared by reactions between thiols (RSH) and selenenyl halides (R'SeX, X = Br, Cl). 10 These species are also obtained by mixing the symmetrical products RS₂R and R'Se₂R' of the usual disproportionation (8):11

$$2 RSSeR' \rightleftharpoons RS_2R + R'Se_2R' \tag{8}$$

Our spectroelectrochemical results on the stabilization of $RSSe^-$ ions were then applied on a preparative scale, to two typical alkylations of RS^- ($R=CH_3$, Ph) + Se solutions.

Results and discussion

$$S_x^{2-}$$
, Se_x^{2-} , RS^- and RSe^- ions in DMA

There is now general agreement concerning the nature of polysulfide ions in dipolar aprotic media. 12,13 In N,N-dimethylacetamide, sulfur reduces in two bielectronic steps with respect to S₈ on a gold rotating electrode [waves R₁ and R₂, $E_{1/2}(\rm R_1) = -0.40~\rm V~vs.$ reference, $E_{1/2}(\rm R_2) = -1.10~\rm V]. ^{13}$ The electrolysis at controlled potential on the plateau of R₁ occurs via the disproportionation (9) of red S₈ $^{2-}$ ions ($\lambda_{\rm max1} = 515~\rm mm, \varepsilon_{515}^8 = 3800~\rm dm^3~mol^{-1}~cm^{-1}; \ \lambda_{\rm max2} = 360~\rm nm, \ \varepsilon_{360}^8 = 9000~\rm dm^3~mol^{-1}~cm^{-1}),$ up to the stable blue S₃ $^{-}$ radical-anion ($\lambda_{\rm max} = 617~\rm nm, \ \varepsilon_{617}^3 = 4100~\rm dm^3~mol^{-1}~cm^{-1})$ in equilibrium with its dimer S₆ $^{2-}$ in a minor proportion. In our opinion cyclooctasulfur is in equilibrium with the reactive S₂ molecules, thus appearing in equations such as (9). 13

DOI: 10.1039/b200638n

Table 1 Redox processes occuring at a Se-coated gold disc electrode in DMA and related peak potentials vs. reference Ag/AgCl, KCl sat. in DMA–NEt₄ClO₄ (0.1 mol dm⁻³) from CV at a scan rate of 100 mV s⁻¹

Redox process	Peaks ^a (potentia	al/V)
$8Se_{(s)} + 2e^{-} \rightleftharpoons Se_{8}^{2-}$ $3Se_{8}^{2-} + 2e^{-} \rightleftharpoons 4Se_{6}^{2-}$ $2Se_{6}^{2-} + 2e^{-} \rightleftharpoons 3Se_{4}^{2-}$ $3Se_{4}^{2-} + 2e^{-} \rightleftharpoons 4Se_{3}^{2-}(?)$ $2Se_{3}^{2-} + 2e^{-} \rightarrow 3Se_{2}^{2-}(?)$	R ₁ (-0.49) R ₂ (-0.62) R ₃ (-0.89) R ₄ (-1.28) R ₅ (-1.55)	O_1' (-0.33) O_1' (-0.33) O_2' (-0.65) O_3' (-1.0)
a R = cathodic; O = anodic.		

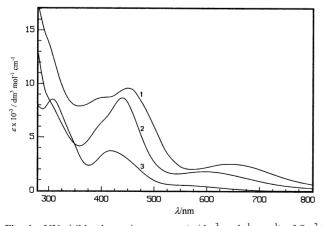
$$S_8^{2-} \rightleftharpoons 2 S_3^{\bullet -} + S_2 \tag{9}$$

$$3 S_8 + 8 e^- \rightarrow 8 S_3^{\bullet -}$$
 (10)

 ${\rm S_8}^{2-}$ and ${\rm S}^{-1/3}$ ions $({\rm S_3}^{\bullet-} \rightleftharpoons {\rm S_6}^{2-})$ oxidize $({\rm O_1})$ and reduce $({\rm R_2})$ at the same potentials $[E_{1/2}({\rm O_1}) = -0.20~{\rm V};~E_{1/2}({\rm R_2}) = -1.10~{\rm V}].$

Prior to this study, Se_x^{2-} ions (x=8,6,4) were successively obtained by coulometric reduction $(R_1-R_3 \text{ steps})$ of weighed amounts of grey selenium coating a large gold grid electrode. Two further reduction steps detected on cyclic voltammograms $(R_4, R_5, \text{ perhaps leading to } \operatorname{Se_3}^{2-}$ and $\operatorname{Se_2}^{2-}$ as in liquid ammonia) were not identifiable by our method because of passivation phenomena on the gold electrode surface. The redox processes summarized in Table 1 and the known UV-visible spectra providing molar absorbance of the stable Se_x^{2-} ions (Fig. 1; x=8, $\lambda_{\max}=648$, 453, 398 nm; x=6, $\lambda_{\max}=598$, 440 nm; x=4, $\lambda_{\max}=550$, 417 nm) were used for quantitative data processing in this study.

RY⁻ ions (Y = Se, R = Ph; Y = S, R = Ph, PhCH₂) were generated ([RY⁻]₀ \leq 4 × 10⁻³ mol dm⁻³) by electrolysis of RY₂R species at a controlled potential of a gold electrode on the plateau of their bielectronic waves (Y = Se, 1,15) Y = S^{3,16}) according to previously described procedures [eqn. 11f]:


$$RY_2R + 2 e^{-} \xrightarrow{f \atop b} 2 RY^{-}$$
 (11)

The electrochemical and spectrophotometric characteristics of RY₂R and RY⁻ species are summarized in Table 2.

PhSe₂Ph/S₃*- and PhSe⁻/S₈ reactions

The addition of PhSe₂Ph to $S_3^{\bullet-}$ ions resulted in instantaneous changes in voltammograms and spectra (Fig. 2) which agreed with equilibrium (12):

$$PhSe_2Ph + 8 S_3^{\bullet -} \rightleftharpoons 2 PhSe^- + 3 S_8^{2-}$$
 (12)

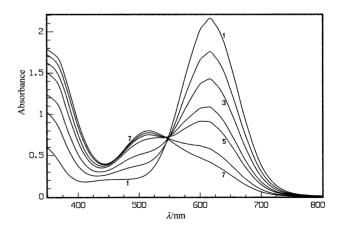
Fig. 1 UV-visible absorption spectra $(\epsilon_i/dm^3\ mol^{-1}\ cm^{-1})$ of Se_8^{2-} (1), Se_6^{2-} (2) and Se_4^{2-} (3) ions in dimethylacetamide.

Table 2 Electrochemical and spectrophotometric characteristics of RY_2R and RY^- species (Y = Se, S) in $DMA-E_{1/2}$ at a rotating gold disc electrode vs. reference

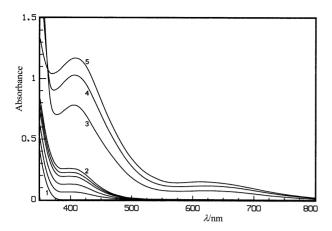
R, Y	DV D	RY ⁻			
	RY_2R $E_{1/2}(R)/V$	$E_{1/2}(O)/V$	λ_{max}/nm	$\varepsilon_{ ext{max}}^{}a}$	
Ph, Se	-0.76	-0.36	318	12 700	
Ph, S	-1.25	+0.02	309	18 200	
PhCH ₂ , S	-1.55	-0.03	285^{b}	3850	
$a \varepsilon_{\rm i}/{\rm dm}^3 {\rm mol}$	⁻¹ cm ⁻¹ . ^b Shou	ılder.			

 $A_{617}(S_3^{\bullet-})$ decreased in favor of A_{515} (S_8^{2-} and A_{360} (S_8^{2-} , and PhSe $^-$ in part) according to calculated $\Delta[S_3^{\bullet-}]/\Delta[S_8^{2-}]$ values close to $-2.6 \simeq -8/3$, and through the same isosbestic point ($\lambda_{\rm is} = 545$ nm) as in the course of electrooxidation (13) of $S^{-1/3}$ ions: 13

$$8 S_3^{\bullet -} \rightarrow 3 S_8^{2-} + 2 e^-$$
 (13)


However, as shown by the growth of the reduction wave of PhSe₂Ph [$E_{1/2}(R) = -0.76$ V] from the first additions of diphenyl diselenide, preceding the constant cathodic current of S₃*-/S₈²⁻ ions [$E_{1/2}(R) = -1.10$ V] reaction (12) was not quantitative. At the stoichiometric value [PhSe₂Ph]_{ad}/[S₃*-]₀ = 1/8 in the experimental conditions of Fig. 2, consumption of S^{-1/3} ions only reached 40%. S₈²⁻ ions remained unreactive towards PhSe₂Ph since A_{515} always increased with addition of the substrate in excess. Conversely, sulfur quantitatively reacted with benzene selenolate ions in accordance with eqn. (14):

$$2 \text{ PhSe}^- + S_8 \rightarrow \text{PhSe}_2\text{Ph} + S_8^{2-}$$
 (14)

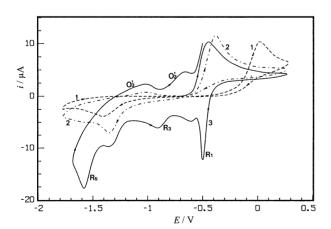

With the addition of sulfur to PhSe $^-$ ions the spectra were the same as those observed when S_8 was electrolyzed at 2 F mol $^{-1}$ S_8 for various $[S_8]_0$ concentrations, 13 regardless of $[S]_{ad}/[PhSe^-]_0$ ratio values between 0 and 1: the increases of absorbances at 515 nm $(S_8^{\,2-})$ and 617 nm $(S_3^{\,\bullet-})$ because of the partial disproportionation (9) with a negligible sulfur proportion always confirmed $(\pm 6\%)$ the conservation eqn. (15):

$$[S_8]_0 = [S_8^{2-}] + 1/2[S_3^{\bullet -}]$$
 (15)

At the same time, the reduction currents of PhSe₂Ph $[E_{1/2}(R) = -0.76 \text{ V}]$ and of $S_3^{\bullet -}/S_8^{2-}$ ions $[E_{1/2}(R) = -1.10 \text{ V}]$ increased, while the anodic wave of the latter $[E_{1/2}(O) = -0.20 \text{ V}]$ progressively replaced that of PhSe⁻ ions $[E_{1/2}(O) = -0.36 \text{ V}]$ up to stoichiometry (14).

Fig. 2 Dependence of the UV-visible spectra on the addition of diphenyl diselenide to a $[S_3^{\bullet-}]_0=6.06\times 10^{-3}$ mol dm⁻³ solution. [PhSe₂Ph]_{ad}/[S₃ $^{\bullet-}]_0=0$ (1); 0.063 (2); 0.12₅ (3); 0.23 (4); 0.32 (5); 0.50₃ (6); 0.96 (7). Thickness of the cell = 0.1 cm; scan rate = 500 nm min⁻¹.

Fig. 3 Changes in UV-visible spectra with the addition of selenium powder to a [PhS $^-$] $_0 = 2.87 \times 10^{-3}$ mol dm $^{-3}$ solution. $n = (\text{Se})_{\text{ad}}/(\text{RS}^-)_0 = 0$ (1); 0.99 (2); 1.98 (3); 2.99 (4); 4.0 (5); recordings at equilibrium except for (1) \rightarrow (2), A = f(t), 0 < t < 95 min.


Thus, in contrast to the two successive steps which were evidenced in the course of the addition of sulfur to the least reducing 2-NO₂C₆H₄Se $^-$ (ArSe $^-$) species, 5 formation (4) of ArSeS $^-$, then reversible oxidation (5) into ArSe₂Ar, only redox processes (12) and (14) resulted from the reactions PhSe₂Ph/S₃ $^{\bullet}$ $^-$ and PhSe $^-/S_8$, respectively, without any observed stabilization of PhSeS $^-$ ions.

Stabilization and electrocatalytic oxidation of RSSe⁻ ions

When grey selenium powder (pellets, diameter $ca.~10{\text -}30~\mu\text{m}$) was added to stirred solutions of PhS⁻ and PhCH₂S⁻ ions at a ratio $n=(\text{Se})_{\text{ad}}/(\text{RS}^-)_0=1$, the changes in UV-visible spectra and cyclic voltammograms were similar in both cases, as illustrated in Figs. 3 and 4 (R = Ph). In the course of the Se consumption which required about 1.5 h up to n=1, two absorption bands regularly increased with time: R = Ph (see Fig. 3, curves $1 \rightarrow 2$), $\lambda_{\text{max}1} = 403~\text{nm}$, $\lambda_{\text{max}2} = 260~\text{nm}$, isosbestic point $\lambda_{\text{is}} = 272~\text{nm}$; R = PhCH₂, $\lambda_{\text{max}1} = 430~\text{nm}$, $\lambda_{\text{max}2} = 260~\text{nm}$, $\lambda_{\text{is}1} = 324~\text{nm}$, $\lambda_{\text{is}2} = 298~\text{nm}$), in agreement with the formation of only RSSe⁻ ions:

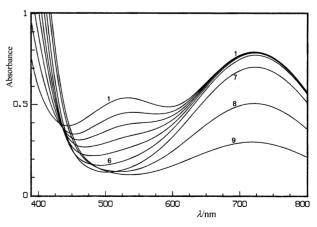
$$RS^- + Se(s) \rightarrow RSSe^- \tag{16}$$

As soon as solid Se was added, and before any growth of absorbance at about 400 nm, the oxidation current of RS-

Fig. 4 Cyclic voltammograms of a [PhS⁻] $_0 = 3.52 \times 10^{-3}$ mol dm⁻³ (0.14 mmol) solution (1) added with selenium powder (11 mg, 0.14 mmol); $\Delta t = 2$ min (2); 92 min (3). *E vs.* Ag/AgCl, KCl sat. in DMA–NEt₄ClO₄ 0.1 mol dm⁻³. Scan rate = 50 mV s⁻¹.

Table 3 $\Delta E_{1/2}(O)/V$ variation of anodic half-wave potentials^a related to the oxidations of RYZ⁻ and RY⁻ ions into RY₂R species

	R = Ph	$R = PhCH_2$	$R = Ar^b$		
Y, Z = S,S	-0.23	-0.46	-0.50		
Y, Z = Se, Se	-0.08	-0.06	-0.41		
Y, Z = S,Se	-0.47	-0.35	-0.68		
^a $\Delta E_{1/2}(O) = E_{1/2}(RYZ^{-}) - E_{1/2}(RY^{-})$. ^b Ar = 2-NO ₂ C ₆ H ₄ .					


ions into RS₂R [Fig. 4, curve 1, $Ep^a = +0.04$ V, $Ep^c = -1.40$ -1.40 V] totally shifted towards less anodic potentials (curve 2, $Ep^a = -0.37$ V). At the end of reaction (16) PhSSe⁻ had an oxidation peak at -0.44 V (curve 3), and reversal of the voltage scan direction resulted in the appearance of the sharp reduction peak of electrodeposited Se $[Ep^c(1) = -0.49 \text{ V}]^2$ followed by the subsequent cathodic peaks 2–5 of the polyselenide ions (Table 1), then associated anodic peaks (3', 2'). This electrochemical behavior of RS⁻ ions in the presence of selenium complies with the following electrocatalytic mechanism [eqns. (16)–(18)], which is analogous to those previously reported for RS⁻/RS₂^{-3,6} and RSe⁻/RSe₂⁻ species:

$$2 RS^{-} - 2e^{-} \rightarrow RS_{2}R$$
 (17)

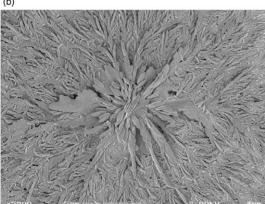
$$RS^- + Se(s) \rightarrow RSSe^-$$
 (16)

$$2 \text{ RSSe}^- - 2e^- \rightarrow \text{RS}_2\text{R} + 2 \text{ Se(s)}$$
 (18)

Thus, RS₂⁻, RSe₂⁻ and RSSe⁻ ions oxidize into RY₂R (Y = S, Se) on a gold electrode, at a greater rate than RY⁻ ions, as shown by the differences between their respective half-wave potentials of oxidation listed in Table 3. The occurrence of the catalytic processes from the addition of insoluble selenium to RY⁻ ions (Y = S, Se) implies fast heterogeneous reactions such as in eqn. (16) between RY⁻ and the released Se in the course of electrooxidation [e.g., eqn. (18)], although RSe₂⁻ or RSSe⁻ were only obtained by direct addition (1) or (16) after 1.5 hour. The same schemes were tested on quantitative electrolysis at a controlled potential of a large gold grid electrode (E = -0.10 V), of a solution containing ArSe⁻ [Ar = 2-NO₂Ph, $E_{1/2}$ (O) = +0.16 V, λ_{max} = 520 nm, ε_{max} = 1200 dm³ mol⁻¹ cm⁻¹]⁵ and ArSe₂⁻ [$E_{1/2}$ (O) = -0.25 V, λ_{max} = 728 nm, ε_{max} = 3450 dm³ mol⁻¹ cm⁻¹]⁵ ions: [ArSe⁻]₀ = 3.40 × 10⁻³ mol dm⁻³, [ArSe₂⁻]₀ = 2.25 × 10⁻³ mol dm⁻³ [spectral changes in Fig. 5 as a function of z F mol⁻¹ (ArSe⁻)₀+ (ArSe₂⁻)₀]. As long as ArSe⁻ ions were in greater

Fig. 5 Spectral changes in the course of the electrooxidation at E = -0.10 V vs. reference of a [ArSe⁻]₀ = 3.40×10^{-3} mol dm⁻³ + [ArSe⁻]₀ = 2.25×10^{-3} mol dm⁻³ solution (Ar = 2-NO₂Ph): z F mol⁻¹ (ArSe⁻)₀ + (ArSe⁻)₀ = 0 (1)–0.58 (6); 0.65 (7); 0.75 (8); 0.85 (9).

concentration than initially added Se ([ArSe $^-$] > [ArSe $^-$] $_0$, z < 0.60, curves 1–6), the decrease in A_{520} was in accordance with the oxidation of ArSe $^-$ ions into ArSe $_2$ Ar (growth of its cathodic wave, $E_{1/2} = -0.69$ V) 5 at a potential (E = -0.10 V) only suited to that of ArSe $_2$ $^-$ [eqn. (19)]:


$$2 \text{ ArSe}_2^- - 2 \text{ e}^- \rightarrow \text{ArSe}_2 \text{Ar} + 2 \text{ Se(s)}$$
 (19)

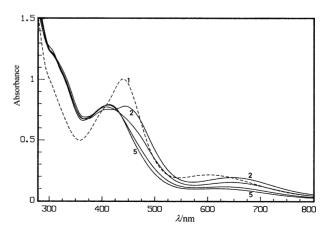
Simultaneously A_{728} (ArSe₂⁻) remained at a constant value because of the 'instantaneous' reaction between ArSe⁻ and Se which was generated at the electrode surface. Then (z > 0.60), curves 7–9), the consumption of ArSe₂⁻ (decrease in A_{728}) resulted in the deposition of solid selenium on the gold grid, and the recovery of ArSe₂Ar $(z \simeq 1.05)$ according to its characteristic absorption at 378 nm $(\varepsilon_{\text{max}} = 7300 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$.

Similarly, a gold foil $(1 \times 1 \text{ cm})$ was coated with grey selenium by electrolysis (E=-0.25 V) of PhSSe⁻ ions (about 0.076 mmol), and then observed by scanning electron microscopy (SEM). The SEM images shown in Figs. 6a–6b revealed an epicentric crystallization with small dendrites, mostly 1 to 2 μ m in length, which could explain the high reactivity of 'Se-nucleophiles' such as RY⁻ species (Y = S, Se) towards electrogenerated selenium.

The recent interest in biochemistry of RSSeR' species^{7–9} led us to examine the alkylation of two RSSe¯ solutions on a preparative scale as examples: CH₃SSe¯+PhCH₂Br and PhSSe¯+CH₃I. The compositions of the mixtures of products RSSeR', RS₂R, R'Se₂R' which were analyzed by ¹H NMR and GC/MS (see Experimental) corresponded to significant disproportionation of the expected selenenyl sulfides CH₃SSeCH₂Ph (\approx 80%) and PhSSeCH₃ (\approx 70%), as previously reported for this class of rather unstable compounds [eqn. (8)].¹¹

Fig. 6 Scanning electron micrographs of electrodeposited selenium on a gold foil from the oxidation of PhSSe⁻ ions (E = -0.25 V). (a) ×1000; (b) ×5000.

Formation of RSSe_v⁻ ions


Further additions of solid selenium to RSSe⁻ ions [R = Ph, PhCH₂, $n = (Se)_{ad}/(RSe^{-})_{0}$ greater than 1] resulted in its total consumption within 2 h (n = 2), then 2.5 h (n = 3), whereas traces of solid Se remained unreactive for n = 4 beyond 4 h. The partial oxidation of the anionic solutions was shown by the appearance of Se_x^{2-} ions $(x \ge 4)$. Mixtures of these species were detected by the simultaneous increase in their absorption at around 625 nm (Se₆²⁻/Se₈²⁻, R = Ph, Fig. 3, curves 3–5) or 590–620 nm (Se₄²⁻/Se₆²⁻ or Se₆²⁻/Se₈²⁻, R = PhCH₂), and in their reduction waves (RDE, x = 8, 6, 4; $E_{1/2} = -0.55, -0.83$, -1.20 V),² with greater currents at potentials close to those of RS₂R (R = Ph, $E_{1/2} \simeq -1.25$ V; R = PhCH₂, $E_{1/2} \simeq$ -1.55 V). At the same time another absorption band increased at about 405 nm (R = Ph) or 380 nm (R = PhCH₂) which could not be related to Se_x^{2-} ions from the shape of their own spectra (Fig. 1). Moreover, spectra and voltammograms were the same when equilibrium was attained for the respective stoichiometries: $RS^- + 2$ Se (R = Ph, Fig. 3, curve 3) and $RS_2R + Se_4^{2-}$; $RS^- + 3$ Se (Fig. 3, curve 4) and $RS_2R + Se_6^{2-}$ (see below Fig. 7, curve 5). All of these observations were analogous to those occurring in the course of the RSe⁻ + n Se(s) ($n \ge 2$) and RSe₂R + Se_x²⁻ (x = 4, 6) reactions, which yielded RSe_y⁻ ions (y = 3, 4, maximal absorbances at 400–420 nm) in equilibrium with RSe2R and mixtures of polyselenide ions [eqn. (2)]. Here again, the fast reactions $RS_2R + Se_x^2$ (R = Ph, PhCH₂; x = 4, 6) were followed by calculations first of the polyselenide concentrations as a function of $m = [RS_2R]_{ad}/[Se_x^{2-}]_0$: $[Se_6^{2-}]$ and $[Se_8^{2-}]$ (598 < λ_{max} < 648 nm), or $[Se_4^{2-}]$ and $[Se_6^{2-}]$ (550 < λ_{max} < 598 nm), were deduced from experimental values of A_{598} and A_{648} or A_{598} and A_{550} , respectively, by the use of the know ε_i molar absorptivity (Fig. 1), e.g. eqn. (20), ε_i (dm³ mol $^{-1}$ cm $^{-1}$, $\pm 4\%$): $\varepsilon_{598}^6 = 1750$, $\varepsilon_{598}^8 = 2150$; $\varepsilon_{648}^8 = 2500$, $\varepsilon_{648}^6 = 1450$.

$$A_{i} = \varepsilon_{i}(Se_{6}^{2-})[Se_{6}^{2-}] + \varepsilon_{i}(Se_{8}^{2-})[Se_{8}^{2-}]$$
 (20)

The other concentrations [RS₂R] and [RSSe_y⁻], as well as the average number \bar{y} of Se units in RSSe_y⁻ chains, were then calculated by solving the conservation equations from [RS₂R]_{ad} and [Se_x²⁻]₀ values. As an example, Fig. 7 shows the changes in spectra for the reaction PhS₂Ph + Se₆²⁻. Two steps can be distinguished:

(i) for $0 < m \le 0.42$ (curves 1–2), the maximal absorbance of $\mathrm{Se_6}^{2-}$ ions (A_{440}, A_{598}) evolved towards that of $\mathrm{Se_8}^{2-}$ $(A_{398}, A_{453}, A_{648})$ through three isosbestic points ($\lambda_{\mathrm{is}} = 398, 474$ and 545 nm), according to the rough stoichiometry of eqn. (21):

$$PhS_2Ph + 2.4 Se_6^{2-} \rightarrow 2 PhSSe_{1.6}^{-} + 1.4 Se_8^{2-}$$
 (21)

Fig. 7 Changes in UV-visible spectra with the addition of diphenyl disulfide to a $[Se_6^{2-}]_0 = 1.15 \times 10^{-3}$ mol dm⁻³ solution: $m = [RS_2R]_{ad}/[Se_6^{2-}]_0 = 0$ (1); 0.42 (2); 0.66 (3); 0.90 (4); 1.02 (5).

Table 4 Calculated compositions of solutions at equilibrium for the reactions $RS_2R + Se_x^2$ (x = 4, 6) and $RS^- + n$ Se (n = 2, 3) depending on initial conditions

Initial cond. ^a	$[\mathrm{Se_4}^{2-}]$	$[\mathrm{Se_6}^{2-}]$	$[\mathrm{Se_8}^{2-}]$	$[(RS)_2]$	$[(RSSe_y^-)]$	$\bar{\mathcal{Y}}$
$[(PhS)_2]_0 = 2.70 + [Se_4^{2-}]_0 = 2.74$	_	0.42	0.21	0.60	4.20	1.6
$[PhS^{-}]_0 = 2.87 + [Se]_0 = 5.70$	_	0.23	0.15	0.38	2.11	1.5
$[(PhS)_2]_0 = 1.12 + [Se_6^{2-}]_0 = 1.10$	_	0.35	0.17	0.54	1.16	2.7
$[PhS^{-}]_{0} = 2.87 + [Se]_{0} = 8.58$	_	0.37	0.22	0.59	1.69	2.7
$[(PhCH_2S)_2]_0 = 2.54 + [Se_4^{2-}]_0 = 2.66$	0.54	0.22	_	0.64	3.80	1.9
$[PhCH_2S^-]_0 = 2.90 + [Se]_0 = 5.70$	0.40_{5}	0.105	_	0.51	1.88	1.85
$[(PhCH_2S)_2]_0 = 1.59 + [Se_6^{2-}]_0 = 1.54$	_	0.47 ₅	0.20	0.72	1.74	2.75
$[PhCH_2S^-]_0 = 2.90 + [Se]_0 = 8.60$	_	0.44 ₅	0.225	0.67	1.56	2.6 ₅
^a All concentrations are in mmol dm ⁻³						

(ii) for $0.42 < m \le 1.0$ (curves 2–5), the progressive displacement $A_{648} \rightarrow A_{618}$ agreed with a partial recovery of $\mathrm{Se_6}^{2-}$ ions, and with the formation at the same time of $\mathrm{RSSe_y}^-$ ions of higher \bar{y} rank (Table 4, m=1, $\bar{y}=2.7$), giving a maximum absorbance at about 412 nm. These results can be explained by eqns. (22)–(24):

$$RS_2R + Se_6^{2-} \leftrightharpoons 2 RSSe_3^-$$
 (22)

$$2 \text{ RSSe}_{3}^{-} + \text{Se}_{6}^{2-} - \xrightarrow{\frac{f}{b}} 2 \text{ RSSe}_{2}^{-} + \text{Se}_{8}^{2-}$$
 (23)

$$2 \text{ RSSe}_2^- + \text{Se}_6^{2-} \xrightarrow{\text{f}} 2 \text{ RSSe}^- + \text{Se}_8^{2-}$$
 (24)

In the presence of $\mathrm{Se_6}^{2-}$ ions in excess (m < 0.42), reactions (22) and (23) totally shift to the right, leading to a mixture of RSSe⁻ and RSSe₂⁻ ions by equilibrium (24) ($\bar{y} \simeq 1.6$). With further additions of RS₂R, the consumption of $\mathrm{Se_6}^{2-}$ displaces equilibria (23) and (24) in reverse, increasing the \bar{y} value to 2.7 (mixture RSSe₂⁻/RSSe₃⁻).

Similarly, three steps were observed from progressive changes in $A = f(\lambda)$ curves during the addition of PhS₂Ph to the more reducing Se₄²⁻ ions: (i) $0 < m \le 0.35$, $A_{550} \rightarrow A_{598}$ and $A_{417} \rightarrow A_{440}$, and thus Se₄²⁻ \rightarrow Se₆²⁻ according to the nearly quantitative redox process (25).

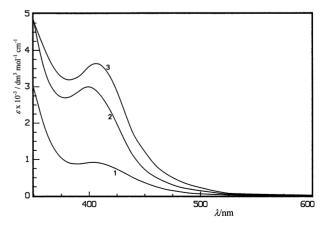
$$PhS_2Ph + 3 Se_4^{2-} \rightarrow 2 PhS^- + 2 Se_6^{2-}$$
 (25)

(ii) $0.35 < m \le 0.67$, $A_{598} \rightarrow A_{645}$ and $A_{440} \rightarrow A_{450}/A_{400}$ due to further reaction of $\mathrm{Se_6}^{2-}$ ions which provided $\mathrm{Se_8}^{2-}$ ions in accordance with the overall eqn. (26).

$$PhS_2Ph + 1.5 Se_4^{2-} \rightarrow 2 PhSSe^- + 0.5 Se_8^{2-}$$
 (26)

(iii) $0.67 < m < 1.0_2$, $A_{645} \rightarrow A_{615}$ and $A_{450}/A_{400} \rightarrow A_{407}$; the reactions of $\mathrm{Se_6}^{2-}/\mathrm{Se_8}^{2-}$ ions finally led to $\bar{y} \simeq 1.6 \ (m=1)$ by 'Se-exchanges' as in eqn. (24).

The calculated concentrations and average \bar{y} numbers at the end of slow reactions $[RS^-]_0 + n$ (Se)_{ad} (R = Ph, PhCH₂; n = 2, 3) and of the equivalent fast reactions $[RS_2R]_0 + [Se_x^{2-}]_0$ (m = 1; x = 4, 6) are given in Table 4. Based on $[RS_2R]$ values at equilibrium compared with $[RS^-]_0$ or $[RS_2R]_0$ (Table 4, R = Ph and PhCH₂), the disproportionations of $RSSe_y^-$ ions could therefore be roughly situated at ca. 25% (y = 2) and 45% (y = 3). These levels meet those of RSe_3^- (30%) and RSe_4^- (~45%) ions [eqn. (2)]. Furthermore, the spectra of $RSSe_y^-$ ions (y = 2, 3) were obtained over the wavelength range 350–600 nm as previously obtained for RSe_3^- and RSe_4^- ions: 1 (i) $RSSe^-/RSSe_2^-$ and $RSSe_2^-/RSSe_3^-$ mixtures were assumed to give $1 < \bar{y} < 2$ and $2 < \bar{y} < 3$ respectively, with definite compositions linked to \bar{y} values (e.g. $\bar{y} = 1.6$, 40% $RSSe^-$ and 60% $RSSe_2^-$); (ii) for the most accurate conditions $[RS_2R]_0 = [Se_x^{2-}]_0$, the absorbances of Se_x^{2-} ions (x = 6, 8 or 4, 6) calculated by the use of concentrations in Table 4 and characteristics in


Fig. 1 were subtracted from the experimental A values, 10 nm apart; (iii) the known spectra of RSSe $^-$ ions (RS $^-+1$ Se, $\varepsilon_i \pm 5\%$) led firstly to those of RSSe $_2$ (x = 4), then RSSe $_3$ (x = 6). The $A = f(\lambda)$ curves are reported in Fig. 8 for R = Ph, whereas Table 5 summarizes the spectrophotometric characteristics of RSSe $_y$ ions (R = Ph, PhCH $_2$; y = 1-3). $\lambda_{\rm max}$ wavelengths of RSSe $_y$ ions were lower by $\simeq 25$ nm than those of homologous RSeSe $_y$ species (y = 1-3), with close ε_y values in both cases. The formation of RSSe $_4$ ions could not be proved from the addition of RS $_2$ R disulfides to Se $_3$ ions, because of the detection of solid selenium within the solutions in the course of the reactions which entailed at first the shift A_{648} (Se $_3$ 2) $\rightarrow A_{630}$ (Se $_3$ 2 /Se $_6$ 2).

Conclusions

Whereas selenolate ions undergo redox exchanges to RSe_2R diselenides with sulfur in N,N-dimethylacetamide, selenium adds to thiolates with the formation of the sulfur–selenium bond in $RSSe^-$ species. The latter reactions, and those leading to RSe_2^- ($RSe^- + Se$) which we recently reported, are analogous to the well known 'S-nucleophilic processes' affording RS_2^- ions from thiolates and sulfur.

In mixtures RS⁻ + RSSe⁻, RSSe⁻ ions oxidize into RS₂R faster than RS⁻ ions on a gold electrode, with a fast heterogeneous reaction between selenolate ions and electrogenerated selenium. RSSeR' alkylated selenenyl sulfides disproportionate to a large extent into symmetrical RS₂R and R'Se₂R' compounds.

 $RSSe_y^-$ ions (y=2, 3), which partly disproportionate into RS_2R and Se_x^{2-} ions, result from the slow addition of solid Se to $RSSe^-$ ions. The same equilibria are readily obtained by the reactions between RS_2R and Se_x^{2-} ions.

Fig. 8 Calculated spectra $(\varepsilon_i/dm^3 \text{ mol}^{-1} \text{ cm}^{-1})$ of PhSSe_y⁻ ions. y = 1-3, (1)–(3).

Table 5 Spectrophotometric characteristics of $RSSe_y^-$ ions (y = 1-3) in dimethylacetamide

R		RSSe ⁻	RSSe ₂ ⁻	RSSe ₃	
Ph	$\lambda_{\max}^a/\text{nm}$	403	400	405	
	ε_{\max}	900	3000	3600	
$PhCH_2$	$\lambda_{\rm max}^a/{\rm nm}$	430	375	375	
	$\varepsilon_{\max}^{b c}$	400	2600	3000	
^a $\lambda_{\max}(y=2, 3) \pm 4 \text{ nm.}$ ^b $\varepsilon_i/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$. ^c $\varepsilon_i(y=2, 3) \pm 15\%$.					

Experimental

Materials and equipment

N,N-Dimethylacetamide, grey selenium (99.999%, 100 mesh), and all the organic compounds were purchased from Aldrich except for diphenyl diselenide and dibenzyl mono-and di-selenide (Acros Organics). Solvent purification and storage after addition of NEt₄ClO₄ (Fluka, 0.1 mol dm⁻³) as supporting electrolyte have been reported elsewhere.¹⁷ Spectroelectrochemical equipments and electrodes, as well as the thermostatted $(20.0 \pm 0.50 \,^{\circ}\text{C})$ flow-through cell¹⁷ have previously been described. All the potentials were referenced to Ag/AgCl, KCl saturated in DMA-NEt₄ClO₄ (0.1 mol dm⁻³) electrode. The Se-coated gold foil was observed by Scanning Electron Microscopy (SEM FEG Gemini 982 Leo Microscope). The micrographs were obtained in secondary electron image mode (accelerating voltage of 2 kV). The synthesized mixtures were analyzed by ¹H NMR spectroscopy (200.132 MHz, Bruker AC 200) with CDCl₃ as the solvent (Me₄ Si as standard) and GC-MS (Hewlett-Packard 5989 A, EI 70 eV).

Generation of Se_r²⁻ ions

Accurate concentrations of $\mathrm{Se_x}^{2-}$ ions were obtained by the same method as recently reported:^{1,2} selenium was initially deposited on a large gold grid electrode [25 < $w(\mathrm{Se})/$ mg < 40] by the electrooxidation ($E=0.0~\mathrm{V}$) of $\mathrm{Se_x}^{2-}$ solutions ($\bar{x}\simeq 6$) which were themselves chemically generated in DMA from the reduction of Se with hydrazine and sodium methoxide:¹⁸

$$12 \ Se(s) + 4 \ MeO^- + N_2H_4 \rightarrow 2 \ Se_6{}^{2-} + 4 \ MeOH + N_2 \eqno(27)$$

The cathodic polarization of the Se-coated grid in DMA (40 cm³) was then kept until the spectra and the related maximal absorbances of Se_x^{2-} (Fig. 1; x=8, E=-0.55 V; x=6, E=-0.75 V; x=4, E=-1.10 V) were attained. Concentrated solutions of RS₂R substrates in DMA (R = Ph, PhCH₂; $v_{\text{max}} = 4 \text{ cm}^3$) were progressively added to Se_x^{2-} ions. In all cases, absorbances reached equilibrium within 1 min.

Syntheses of RSSeR' compounds

The CH₃SSe⁻ + PhCH₂Br and PhSSe⁻ + CH₃I reactions were carried out according to the same procedure on a preparative scale: solid sodium thiomethoxide (95%) and lithium thiophenoxide (1 mol dm⁻³ in THF) of commercial origin were dissolved in 80 cm³ of deaerated DMA under an N₂ atmosphere. The RS⁻ solutions were stirred at 50 °C with selenium powder (Se:RS⁻ = 1:1) which reacted within 3 hours. Stoichiometric amounts of alkyl halides dissolved in DMA (20 cm³) were then added dropwise (20 min) at room temperature to the yellow RSSe⁻ solutions. After filtration (0 °C) of the medium and addition of water (300 cm³), the products were extracted with diethyl ether. The organic phase was thoroughly washed with water (elimination of residual DMA) and dried over MgSO₄. After evaporation *in vacuo*, the mixtures

were rapidly analyzed without attempting to separate the individual compounds because of the poor stability of the RSSeR' species. ^{10,11}

Reaction of CH₃SSe⁻ ions with PhCH₂Br. CH₃S⁻Na⁺ (0.814 g, 11.6 mmol), Se (0.909 g, 11.5 mmol), PhCH₂Br (1.40 cm³, 11.5 mmol). The composition of the mixture of products (1.97 g): CH₃SSeCH₂Ph (29%), (PhCH₂)₂Se₂ (57%), $(CH_3S)_2$ (14%), was determined from δ_H (s, 2H) and δ_H (s, 3H); (CH₃S)₂ and (PhCH₂)₂Se₂ were identified by the use of commercial samples which were added to the synthesized mixture. Volatile (CH₃S)₂ was assumed to have been greatly reduced in the course of the solvent evaporation. The disproportionation level of CH₃SSeCH₂Ph ($\simeq 80\%$) was thus calculated by reference to the only (PhCH₂)₂Se₂ proportion. (PhCH₂)₂Se, which gave no ¹H NMR signal, was detected in the mass spectra as a result of the known selenium extrusion from benzylic diselenide under thermal conditions. 19 CH₃SSeCH₂Ph: $\delta_{\rm H}$ 2.24₅ (s, 3H), 4.08 (s, 2H); m/z 218 (⁸⁰Se, M^+ , 4%), 91 (100), 65(16) and 39 (9). (PhCH₂)₂S₂: δ_H 3.80 (s, 4H); m/z 342 (⁸⁶Se, M⁺, 2%), 91 (100). (CH₃S)₂: $\delta_{\rm H}$ 2.39₅ (6H, s; m/z 96 (M⁺ + 2, 11), 94 (M⁺, 100%). (PhCH₂)₂Se: m/z 262 (⁸⁰Se, M⁺, 7%), 91 (100).

Reaction of PhSSe⁻ with CH₃I. PhS⁻Li⁺ in THF (11 cm³, 11 mmol), Se (0.792 g, 10.0 mmol), CH₃I (0.80 cm³, 12.8 mmol). The products were identified both by ¹H NMR with the use of commercial samples of (PhS)2, (CH3Se)2 and PhSCH3 compounds, and by GC-MS. The composition of the mixture (1.79 g): PhSSeCH₃ (32%), (PhS)₂ (35%), (CH₃Se)₂ (22%) PhSCH₃ (11%, close to the initia1 PhS⁻:PhSSe⁻ = 1:10), was determined by combining the integrals of $\delta_{\rm H}$ (s, 3H) with those of aromatic $\delta_{\rm H}$, (PhS)₂ (4 Ho) and PhSSeCH₃ (2Ho). It was in good agreement with the integration of the GC peaks. Here again, the disproportionation of PhSSeCH₃ (≈70%) was evaluated from the respective proportions of PhSSeCH₃ and (PhS)₂ in the mixture. PhSSeCH₃: δ_H 2.46 (s, 3H), 7.51 (1Ho, Ar), 7.55 (1Ho, Ar); m/z 204 (⁸⁰Se, M⁺, 87%), 189 (57), 109 (100), 77 (51), 69 (37), 65 (76), 51 (43), 39 (49). (PhS)₂: $\delta_{\rm H}$ 7.45 (2Ho, Ar), 7.49 (2Ho, Ar); m/z218 (M⁺, 76%). (CH₃Se)₂: $\delta_{\rm H}$ 2.67₅ (s, 6H); m/z 190 (⁸ M⁺, 88%). PhSCH₃: $\delta_{\rm H}$ 2.44₇ (s, 3H); m/z 124 (M⁺, 100%).

References

- A. Ahrika, J. Robert, M. Anouti and J. Paris, New J. Chem., 2001, 25, 741.
- 2 A. Ahrika and J. Paris, New J. Chem., 1999, **23**, 1177.
- 3 G. Bosser, M. Anouti and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1996, 1993.
- 4 C. Köllemann, D. Obendorf and F. Sladsky, *Phosphorus Sulfur Relat. Elem.*, 1988, **38**, 69.
- 5 A. Ahrika, J. Auger and J. Paris, New J. Chem., 1999, 23, 679.
- 6 M. Benaïchouche, G. Bosser, J. Paris, J. Auger and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 31.
- 7 E. Block, in *Dietary Phytochemicals in Cancer Prevention and Treatment*, Plenum Press, New York, 1996, pp. 155–169 and references cited therein.
- 8 C. Ip and D. J. Lisk, in *Dietary Phytochemicals in Cancer Prevention and Treatment*, Plenum Press, New York, 1996, pp. 179–187.
- X.-J. Cai, P. C. Uden, E. Block, X. Zhang, B. D. Quimby and J. J. Sullivan, *J. Agric. Food Chem.*, 1994, 42, 2081.
- (a) H. Rheinbolt and E. Giesbrecht, *Liebigs Ann. Chem.*, 1950, 198; (b) H. H. Sisler and N. K. Kotia, *J. Org. Chem.*, 1971, 36, 1700; (c) J. L. Kice and T. W. S. Lee, *J. Am. Chem. Soc.*, 1978, 100, 5094; (d) M. Yoshida, T. Cho and M. Kobayashi, *Chem. Lett.*, 1984, 1109.
- (a) W. Mc Farlane, J. Chem. Soc. (A), 1969, 913; (b) V. A. Potapov, S. V. Amosova, P. A. Petrov, L. S. Romanenko and V. V. Keiko, Sulfur Lett., 1992, 15, 121.
- 12 F. Gaillard and E. Levillain, J. Electroanal. Chem., 1995, 398, 77 and references cited therein.

- 13 G. Bosser and J. Paris, New J. Chem., 1995, 19, 391.

- G. Bosser and J. Paris, New J. Chem., 1995, 19, 391.
 K. W. Sharp and W. H. Koelher, Inorg. Chem., 1977, 16, 2258.
 (a) C. Degrand, J. Chem. Soc., Chem. Commun., 1986, 1113;
 (b) C. Degrand and R. Prest, J. Org. Chem., 1990, 55, 5242.
 (a) F. Magno, G. Bontempelli and G. Pilloni, J. Electroanal. Chem., 1971, 30, 375; (b) M. Liu, S.-J. Visco and L. C. De Jonghe, L. Electrochem. Sec. 1080, 126, 2570. J. Electrochem. Soc., 1989, 136, 2570.
- 17 J. Paris and V. Plichon, *Electrochim. Acta*, 1981, **26**, 1823.
- H. Eggert, O. Nielsen and L. Henriksen, J. Am. Chem. Soc., 1986, **108**, 1725.
- (a) M. A. Lardon, Ann. N.Y. Acad. Sci., 1972, 192, 132; (b) J. Y. Chu and J. W. Lewicki, J. Org. Chem., 1977, 42, 2491.